Book Image

Mastering Concurrency in Python

By : Quan Nguyen
Book Image

Mastering Concurrency in Python

By: Quan Nguyen

Overview of this book

Python is one of the most popular programming languages, with numerous libraries and frameworks that facilitate high-performance computing. Concurrency and parallelism in Python are essential when it comes to multiprocessing and multithreading; they behave differently, but their common aim is to reduce the execution time. This book serves as a comprehensive introduction to various advanced concepts in concurrent engineering and programming. Mastering Concurrency in Python starts by introducing the concepts and principles in concurrency, right from Amdahl's Law to multithreading programming, followed by elucidating multiprocessing programming, web scraping, and asynchronous I/O, together with common problems that engineers and programmers face in concurrent programming. Next, the book covers a number of advanced concepts in Python concurrency and how they interact with the Python ecosystem, including the Global Interpreter Lock (GIL). Finally, you'll learn how to solve real-world concurrency problems through examples. By the end of the book, you will have gained extensive theoretical knowledge of concurrency and the ways in which concurrency is supported by the Python language
Table of Contents (22 chapters)

Locks as a solution to race conditions

In this section, we will discuss the most common solution to race conditions: locks. Intuitively, since the race conditions that we observed arose when multiple threads or processes accessed and wrote to a shared resource simultaneously, the key idea to solving race conditions is to isolate the executions of different threads/processes, especially when interacting with a shared resource. Specifically, we need to make sure that a thread/process can only access the shared resource after any other threads/processes interacting with the resource have finished their interactions with that resource.

The effectiveness of locks

With locks, we can turn a shared resource in a concurrent program...