Book Image

Mastering Concurrency in Python

By : Quan Nguyen
Book Image

Mastering Concurrency in Python

By: Quan Nguyen

Overview of this book

Python is one of the most popular programming languages, with numerous libraries and frameworks that facilitate high-performance computing. Concurrency and parallelism in Python are essential when it comes to multiprocessing and multithreading; they behave differently, but their common aim is to reduce the execution time. This book serves as a comprehensive introduction to various advanced concepts in concurrent engineering and programming. Mastering Concurrency in Python starts by introducing the concepts and principles in concurrency, right from Amdahl's Law to multithreading programming, followed by elucidating multiprocessing programming, web scraping, and asynchronous I/O, together with common problems that engineers and programmers face in concurrent programming. Next, the book covers a number of advanced concepts in Python concurrency and how they interact with the Python ecosystem, including the Global Interpreter Lock (GIL). Finally, you'll learn how to solve real-world concurrency problems through examples. By the end of the book, you will have gained extensive theoretical knowledge of concurrency and the ways in which concurrency is supported by the Python language
Table of Contents (22 chapters)

How to simulate in Python

In this section, we will look at the results of Amdahl's Law through a Python program. Still considering the task of determining whether an integer is a prime number, as discussed in Chapter 1, Advanced Introduction to Concurrent and Parallel Programming, we will see what actual speedup is achieved through concurrency. If you already have the code for the book downloaded from the GitHub page, we are looking at the Chapter02/example1.py file.

As a refresher, the function that checks for prime numbers is as follows:

# Chapter02/example1.py

from math import sqrt

def is_prime(x):
if x < 2:
return False

if x == 2:
return x

if x % 2 == 0:
return False

limit = int(sqrt(x)) + 1
for i in range(3, limit, 2):
if x % i == 0:
return False

return x

The next part of the code is a function that takes in an...