Book Image

Mastering Concurrency in Python

By : Quan Nguyen
Book Image

Mastering Concurrency in Python

By: Quan Nguyen

Overview of this book

Python is one of the most popular programming languages, with numerous libraries and frameworks that facilitate high-performance computing. Concurrency and parallelism in Python are essential when it comes to multiprocessing and multithreading; they behave differently, but their common aim is to reduce the execution time. This book serves as a comprehensive introduction to various advanced concepts in concurrent engineering and programming. Mastering Concurrency in Python starts by introducing the concepts and principles in concurrency, right from Amdahl's Law to multithreading programming, followed by elucidating multiprocessing programming, web scraping, and asynchronous I/O, together with common problems that engineers and programmers face in concurrent programming. Next, the book covers a number of advanced concepts in Python concurrency and how they interact with the Python ecosystem, including the Global Interpreter Lock (GIL). Finally, you'll learn how to solve real-world concurrency problems through examples. By the end of the book, you will have gained extensive theoretical knowledge of concurrency and the ways in which concurrency is supported by the Python language
Table of Contents (22 chapters)

Applying concurrency to image processing

We have talked a lot about the basics of image processing and some common image processing techniques. We also know why image processing is a heavy number-crunching task, and that concurrent and parallel programming can be applied to speed up independent processing tasks. In this section, we will be looking at a specific example on how to implement a concurrent image processing application that can handle a large number of input images.

First, head to the current folder for this chapter's code. Inside the input folder, there is a subfolder called large_input, which contains 400 images that we will be using for this example. These pictures are different regions in our original ship image, which have been cropped from it using the array-indexing and -slicing options that NumPy provides to slice OpenCV image objects. If you are curious...