Book Image

OpenCV 4 for Secret Agents - Second Edition

By : Joseph Howse
Book Image

OpenCV 4 for Secret Agents - Second Edition

By: Joseph Howse

Overview of this book

OpenCV 4 is a collection of image processing functions and computer vision algorithms. It is open source, supports many programming languages and platforms, and is fast enough for many real-time applications. With this handy library, you’ll be able to build a variety of impressive gadgets. OpenCV 4 for Secret Agents features a broad selection of projects based on computer vision, machine learning, and several application frameworks. To enable you to build apps for diverse desktop systems and Raspberry Pi, the book supports multiple Python versions, from 2.7 to 3.7. For Android app development, the book also supports Java in Android Studio, and C# in the Unity game engine. Taking inspiration from the world of James Bond, this book will add a touch of adventure and computer vision to your daily routine. You’ll be able to protect your home and car with intelligent camera systems that analyze obstacles, people, and even cats. In addition to this, you’ll also learn how to train a search engine to praise or criticize the images that it finds, and build a mobile app that speaks to you and responds to your body language. By the end of this book, you will be equipped with the knowledge you need to advance your skills as an app developer and a computer vision specialist.
Table of Contents (16 chapters)
Free Chapter
1
Section 1: The Briefing
4
Section 2: The Chase
9
Section 3: The Big Reveal
12
Making WxUtils.py Compatible with Raspberry Pi
13
Learning More about Feature Detection in OpenCV
14
Running with Snakes (or, First Steps with Python)

Summary

Silence is golden—or perhaps gestures are. At least, gestures can fill an awkward silence and control an app that whispers reminders in your earphones.

In this chapter, we built our first Android app with OpenCV's Java bindings. We also learned to use optical flow to track the movement of an object after detection. Thus, we are able to recognize a gesture, such as a head moving up and down in a nod.

In the next chapter, our project deals with motion in three dimensions. We will build a system that estimates changes in distance in order to alert a driver when the car is being followed.