Book Image

Modern C++: Efficient and Scalable Application Development

By : Richard Grimes, Marius Bancila
Book Image

Modern C++: Efficient and Scalable Application Development

By: Richard Grimes, Marius Bancila

Overview of this book

C++ is one of the most widely used programming languages. It is fast, flexible, and used to solve many programming problems. This Learning Path gives you an in-depth and hands-on experience of working with C++, using the latest recipes and understanding most recent developments. You will explore C++ programming constructs by learning about language structures, functions, and classes, which will help you identify the execution flow through code. You will also understand the importance of the C++ standard library as well as memory allocation for writing better and faster programs. Modern C++: Efficient and Scalable Application Development deals with the challenges faced with advanced C++ programming. You will work through advanced topics such as multithreading, networking, concurrency, lambda expressions, and many more recipes. By the end of this Learning Path, you will have all the skills to become a master C++ programmer. This Learning Path includes content from the following Packt products: • Beginning C++ Programming by Richard Grimes • Modern C++ Programming Cookbook by Marius Bancila • The Modern C++ Challenge by Marius Bancila
Table of Contents (24 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
12
Math Problems
13
Language Features
14
Strings and Regular Expressions
15
Streams and Filesystems
16
Date and Time
17
Algorithms and Data Structures
Index

Creating raw user-defined literals


In the previous recipe, we have looked at the way C++11 allows library implementers and developers to create user-defined literals and the user-defined literals available in the C++14 standard. However, user-defined literals have two forms, a cooked form, where the literal value is processed by the compiler before being supplied to the literal operator, and a raw form, in which the literal is not parsed by the compiler. The latter is only available for integral and floating-point types. In this recipe, we will look at creating raw user-defined literals.

Getting ready

Before continuing with this recipe, it is strongly recommended that you go through the previous one, Creating cooked user-defined literals, as general details about user-defined literals will not be reiterated here.

To exemplify the way raw user-defined literals can be created, we will define binary literals. These binary literals can be of 8-bit, 16-bit, and 32-bit (unsigned) types. These types...