Book Image

Advanced Python Programming

By : Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis
Book Image

Advanced Python Programming

By: Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis

Overview of this book

This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: • Python High Performance - Second Edition by Gabriele Lanaro • Mastering Concurrency in Python by Quan Nguyen • Mastering Python Design Patterns by Sakis Kasampalis
Table of Contents (41 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Summary


In the field of computer science, a process is an instance of a specific computer program or software that is being executed by the operating system. A process contains both the program code and its current activities and interactions with other entities. More than one thread can be implemented within the same process to access and share memory or other resources, while different processes do not interact in this way.

In the context of concurrency and parallelism, multiprocessing refers to the execution of multiple concurrent processes from an operating system, in which each process is executed on a separate CPU, as opposed to a single process being executed at any given time. The multiprocessing module in Python provides a powerful and flexible API to spawn and manage processes for a multiprocessing application. It also allows complex techniques for interprocess communication via the Queue class.

In the next chapter, we will be discussing a more advanced function of Python—reduction...