Book Image

Advanced Python Programming

By : Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis
Book Image

Advanced Python Programming

By: Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis

Overview of this book

This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: • Python High Performance - Second Edition by Gabriele Lanaro • Mastering Concurrency in Python by Quan Nguyen • Mastering Python Design Patterns by Sakis Kasampalis
Table of Contents (41 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Implementation


Let's assume we are building an application where the user is going to manage and deliver content after fetching it from diverse sources, which could be:

  • A web page (based on its URL)
  • A resource accessed on an FTP server
  • A file on the local file system
  • A database server

So, here is the idea: instead of implementing several content classes, each holding the methods responsible for getting the content pieces, assembling them, and showing them inside the application, we can define an abstraction for the Resource Content and a separate interface for the objects that are responsible for fetching the content. Let's try it!

We begin with the class for our Resource Content abstraction, called ResourceContent. Then, we will need to define the interface for implementation classes that help fetch content, that is, the ResourceContentFetcher class. This concept is called the Implementor.

The first trick we use here is that, via an attribute (_imp) on the ResourceContent class, we maintain a...