Book Image

Building Computer Vision Projects with OpenCV 4 and C++

By : David Millán Escrivá, Prateek Joshi, Vinícius G. Mendonça, Roy Shilkrot
Book Image

Building Computer Vision Projects with OpenCV 4 and C++

By: David Millán Escrivá, Prateek Joshi, Vinícius G. Mendonça, Roy Shilkrot

Overview of this book

OpenCV is one of the best open source libraries available and can help you focus on constructing complete projects on image processing, motion detection, and image segmentation. This Learning Path is your guide to understanding OpenCV concepts and algorithms through real-world examples and activities. Through various projects, you'll also discover how to use complex computer vision and machine learning algorithms and face detection to extract the maximum amount of information from images and videos. In later chapters, you'll learn to enhance your videos and images with optical flow analysis and background subtraction. Sections in the Learning Path will help you get to grips with text segmentation and recognition, in addition to guiding you through the basics of the new and improved deep learning modules. By the end of this Learning Path, you will have mastered commonly used computer vision techniques to build OpenCV projects from scratch. This Learning Path includes content from the following Packt books: •Mastering OpenCV 4 - Third Edition by Roy Shilkrot and David Millán Escrivá •Learn OpenCV 4 By Building Projects - Second Edition by David Millán Escrivá, Vinícius G. Mendonça, and Prateek Joshi
Table of Contents (28 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
Index

Images and matrices


The most important structure in computer vision is, without doubt, the images. The image in a computer vision is the representation of the physical world captured with a digital device. This picture is only a sequence of numbers stored in a matrix format (refer to the following diagram). Each number is a measurement of the light intensity for the considered wavelength (for example, red, green, or blue in color images) or for a wavelength range (for panchromatic devices). Every point in an image is called a pixel (for a picture element), and each pixel can store one or more values depending on whether it is a black and white image (also referred to as a binary image) that stores only one value, such as 0 or 1, a grayscale-level image that stores two values, or a color image that stores three values. These values are usually between 0 and 255 in an integer number, but you can use other ranges, for example 0 to 1 in floating point numbers, as in high dynamic range imaging...