Book Image

Building Computer Vision Projects with OpenCV 4 and C++

By : David Millán Escrivá, Prateek Joshi, Vinícius G. Mendonça, Roy Shilkrot
Book Image

Building Computer Vision Projects with OpenCV 4 and C++

By: David Millán Escrivá, Prateek Joshi, Vinícius G. Mendonça, Roy Shilkrot

Overview of this book

OpenCV is one of the best open source libraries available and can help you focus on constructing complete projects on image processing, motion detection, and image segmentation. This Learning Path is your guide to understanding OpenCV concepts and algorithms through real-world examples and activities. Through various projects, you'll also discover how to use complex computer vision and machine learning algorithms and face detection to extract the maximum amount of information from images and videos. In later chapters, you'll learn to enhance your videos and images with optical flow analysis and background subtraction. Sections in the Learning Path will help you get to grips with text segmentation and recognition, in addition to guiding you through the basics of the new and improved deep learning modules. By the end of this Learning Path, you will have mastered commonly used computer vision techniques to build OpenCV projects from scratch. This Learning Path includes content from the following Packt books: •Mastering OpenCV 4 - Third Edition by Roy Shilkrot and David Millán Escrivá •Learn OpenCV 4 By Building Projects - Second Edition by David Millán Escrivá, Vinícius G. Mendonça, and Prateek Joshi
Table of Contents (28 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
Index

Good features to track


Harris corner detector performs well in many cases, but it can still be improved. Around six years after the original paper by Harris and Stephens, Shi and Tomasi came up with something better and they called it Good Features to Track. You can read the original paper here: http://www.ai.mit.edu/courses/6.891/handouts/shi94good.pdf. They used a different scoring function to improve the overall quality. Using this method, we can find the N strongest corners in the given image. This is very useful when we don't want to use every single corner to extract information from the image. As we discussed, a good interest point detector is very useful in applications such as object tracking, object recognition, and image search.

If you apply the Shi-Tomasi corner detector to an image, you will see something like this:

As we can see here, all the important points in the frame are captured. Let's look at the code to track these features:

int main(int argc, char* argv[]) 
{ 
    //...