Book Image

The Complete Rust Programming Reference Guide

By : Rahul Sharma, Vesa Kaihlavirta, Claus Matzinger
Book Image

The Complete Rust Programming Reference Guide

By: Rahul Sharma, Vesa Kaihlavirta, Claus Matzinger

Overview of this book

Rust is a powerful language with a rare combination of safety, speed, and zero-cost abstractions. This Learning Path is filled with clear and simple explanations of its features along with real-world examples, demonstrating how you can build robust, scalable, and reliable programs. You’ll get started with an introduction to Rust data structures, algorithms, and essential language constructs. Next, you will understand how to store data using linked lists, arrays, stacks, and queues. You’ll also learn to implement sorting and searching algorithms, such as Brute Force algorithms, Greedy algorithms, Dynamic Programming, and Backtracking. As you progress, you’ll pick up on using Rust for systems programming, network programming, and the web. You’ll then move on to discover a variety of techniques, right from writing memory-safe code, to building idiomatic Rust libraries, and even advanced macros. By the end of this Learning Path, you’ll be able to implement Rust for enterprise projects, writing better tests and documentation, designing for performance, and creating idiomatic Rust code. This Learning Path includes content from the following Packt products: • Mastering Rust - Second Edition by Rahul Sharma and Vesa Kaihlavirta • Hands-On Data Structures and Algorithms with Rust by Claus Matzinger
Table of Contents (29 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

What is safe and unsafe really?


“You are allowed to do this, but you had better know what you are doing.”

- A Rustacean

When we talk about safety in programming languages, it is a property that spans different levels. A language can be memory-safe, type-safe, or it can be concurrent-safe. Memory safety means that a program doesn't write to a forbidden memory address and it doesn't access invalid memory. Type safety means that a program doesn't allow you to assign a number to a string variable and that this check happens at compile time, while concurrent-safe means that the program does not lead to race conditions when multiple threads are executing and modifying a shared state. If a language provides all of these levels of safety by itself, then it is said to be safe. To put it more generally, a program is deemed safe if, in all possible executions of the program and for all possible inputs, it gives correct outputs, does not lead to crashes, and does not clobber or corrupt its internal or...