Book Image

Learning Nagios 4

By : Wojciech Kocjan
Book Image

Learning Nagios 4

By: Wojciech Kocjan

Overview of this book

Table of Contents (19 chapters)
Learning Nagios 4
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Understanding the basics of Nagios


Nagios is a tool for system monitoring. It means that Nagios watches computers or devices on your network and ensures that they are working as they should. Nagios constantly checks if other machines are working properly. It also verifies that various services on those machines are working fine. In addition, Nagios accepts other processes or machines reporting their status, for example, a web server can directly report if it is not overloaded to Nagios.

The main purpose of system monitoring is to detect as soon as possible any system that is not working properly so that users of that system will not report the issue to you first.

System monitoring in Nagios is split into two categories of objects: hosts and services. Hosts represent a physical or virtual device on your network (servers, routers, workstations, printers, and so on). Services are particular functionalities, for example, a Secure Shell (SSH) server (sshd process on the machine) can be defined as a service to be monitored. Each service is associated with a host on which it is running. In addition, machines can be grouped into host groups.

A major benefit of Nagios' performance checks is that it only uses four distinct states—Ok, Warning, Critical, and Unknown. It is also based on plugins—this means if you want to check something that's not yet possible to do, you just need to write a simple piece of code, and that's it!

The approach to only offer three states allows administrators to ignore monitoring values themselves and just decide on what the warning/critical limits are. This is a proven concept, and is far more efficient than monitoring graphs and analyzing trends. For example, system administrators tend to ignore things such as gradually declining storage space. People often simply ignore the process until a critical process runs out of disk space. Having a strict limit to watch is much better, because you always catch a problem regardless of whether it turns from warning to critical in 15 minutes or in a week. This is exactly what Nagios does. Each check performed by Nagios is turned from numeric values (such as the amount of disk space or CPU usage) to one of the three possible states.

Another benefit is a report stating that X services are up and running, Y are in warning state, and Z are currently critical, which is much more readable than a matrix of values. It saves you the time of analyzing what's working and what's failing. It can also help prioritize what needs to be handled first, and which problems can be handled later.

Nagios performs all of its checks using plugins. These are external components for which Nagios passes information on what should be checked and what the warning and critical limits are. Plugins are responsible for performing the checks and analyzing results. The output from such a check is the status (working, questionable, or failure) and additional text describing information on the service in details. This text is mainly intended for system administrators to be able to read the detailed status of a service.

Nagios comes with a set of standard plugins that allow performance checks for almost all services your company might offer. See Chapter 4, Using the Nagios Plugins, for detailed information on plugins that are developed along with Nagios. Moreover, if you need to perform a specific check (for example, connect to a Web service and invoke methods), it is very easy to write your own plugins. And that's not all—they can be written in any language and it takes less than 15 minutes to write a complete check command! Chapter 11, Programming Nagios, talks about that ability in more detail.

The benefits of monitoring resources

There are many reasons for you to ensure that all your resources are working as expected. If you're still not convinced after reading the introduction to this chapter, here are a few important points why it is important to monitor your infrastructure.

The main reason is quality improvement. If your IT staff can notice failures quicker by using a monitoring tool, they will also be able to respond to them much faster. Sometimes it takes hours or days to get the first report of a failure even if many users bump into errors. Nagios ensures that if something is not working, you'll know about it. In some cases, event handling can even be done so that Nagios can switch to the backup solution until the primary process is fixed. A typical case would be to start a dial-up connection and use it as a primary connection in cases when the company VPN is down.

Another reason is much better problem determination. Very often what the users report as a failure is far from the root cause of the problem, such as an email system is down due to the LDAP service not working correctly. If you define dependencies between hosts correctly, then Nagios will point out that the POP3 e-mail server is assumed to be "not working" because the LDAP service that it depends upon has a problem. Nagios will start checking the e-mail server as soon as the problem with LDAP has been resolved.

Nagios is also very flexible when it comes down to notifying people of what isn't functioning correctly. In most cases, your company has a large IT team or multiple teams. Usually, you want some people to handle servers, others to handle network switches/routers/modems. There might also be a team responsible for network printers or a division is made based on geographical locations. You can instruct Nagios on who is responsible for particular machines or groups of machines, so that when something is wrong, the right people will get to know of it. You can also use Nagios' web interface to manage who is working on what issue.

Monitoring resources not only is useful for finding problems, but also saves you from having them—Nagios handles warnings and critical situations differently. This means that it's possible to be aware of situations that may become problems really soon. For example, if your disk storage on an e-mail server is running out, it's better to be aware of this situation before it becomes a critical issue.

Monitoring can also be set up on multiple machines across various locations. These machines will then communicate all their results to a central Nagios server so that information on all hosts and services in your system can be accessed from a single machine. This gives you a more accurate picture of your IT infrastructure, as well as allows testing more complex systems such as firewalls. For example, it is vital that a testing environment is accessible from a production environment, but not the other way around.

It is also possible to set up a Nagios server outside the company's intranet (for example, over a dedicated DSL) to make sure that traffic from the Internet is properly blocked. It can be used to check if only certain services are available, for example, verify that only SSH and Hypertext Transfer Protocol (HTTP) are accessible from external IP addresses, and that services such as databases are inaccessible to users.

Main features

Nagios' main strength is flexibility—it can be configured to monitor your IT infrastructure in the way you want it. It also has a mechanism to react automatically to problems and has a powerful notification system. All of this is based on a clear object definition system, which in turn is based on a few types of objects, shown as follows:

  • Commands: These are definitions of how Nagios should perform particular types of checks. They are an abstraction layer on top of actual plugins that allow you to group similar types of operations.

  • Time periods: These are date and time spans at which an operation should or should not be performed. For example, Monday–Friday, 09:00–17:00.

  • Hosts and host groups: These are devices along with the possibility to group hosts. A single host might be a member of more than one group.

  • Services: These are various functionalities or resources to monitor on a specific host. For example, CPU usage, storage space, or Web server.

  • Contacts and contact groups: These are people that should be notified with information on how and when they should be contacted; contacts can be grouped, and a single contact might be a member of more than one group.

  • Notifications: These define who should be notified of what, for example, all errors for the linux-servers host group should go to the linux-admins contact group during working hours and to the critsit-team contact group outside of working hours. Notifications are not strictly an object, but a combination of all the preceding objects and are an essential part of Nagios.

  • Escalations: These are an extension to notifications; they define that after an object is in same state for specific period of time, other people should get notified of certain events—for example, a critical server being down for more than 4 hours should alert IT management so that they track the issue.

A beneficial feature of using Nagios is that it is a mature dependency system. For any administrator, it is obvious that if your router is down, then all machines accessed via it will fail. Some systems don't take that into account, and in such cases, you get a list of several failing machines and services. Nagios allows you to define dependencies between hosts to reflect actual network topology. For example, if a router that connects you to the rest of your network is down, Nagios will not perform checks for the subsequent parts and machines that are dependent on the router. This is illustrated in the following figure:

You can also define that a particular service depends on another service, either on the same host or a different host. In case one of the dependent services is down, a check for a service is not even performed.

For example, in order for your company's intranet application to function properly, both an underlying Web server and database server must be running properly. So, if a database service is not working properly, Nagios will not perform checks and/or not send notifications that your application is not working, because the root cause of the problem is that the database is not working properly. The database server might be on the same host or a different host. If the database is not working properly, if the dependent machine is down or not accessible, all services dependent on the database service will not be checked as well.

Nagios offers a consistent system of macro definitions. These are variables that can be put into all object definitions and depend on the context. They can be put inside commands, and depending on the host, service, and many other parameters, macro definitions are substituted accordingly. For example, a command definition might use an IP address of the host it is currently checking in all remote tests. It also makes it possible to put information such as the previous and current status of a service in a notification e-mail. Nagios 3 also offers various extensions to macro definitions, which make it an even more powerful mechanism.

Nagios also offers mechanism for scheduling planned downtimes. This is mainly used when maintenance of the IT infrastructure is to be carried out, and servers and/or services they provide are out of order for a period of time. You can let Nagios know that such an event will occur, and it will not send notifications about problems with hosts and/or services that have a scheduled downtime. In such cases, dependencies are also taken into consideration—if a database has a scheduled downtime, notifications for the services that depend on it will not be sent out. Nagios can also notify people of planned downtimes automatically. This allows creating an integrated process of scheduling downtimes that will also handle informing users.