Book Image

Mapping and Visualization with SuperCollider

By : Marinos Koutsomichalis
Book Image

Mapping and Visualization with SuperCollider

By: Marinos Koutsomichalis

Overview of this book

SuperCollider is an environment and programming language used by musicians, scientists, and artists who work with audio-files SuperCollider has built-in graphical features which are used in conjunction with the sound synthesis server to create audio-visual mapping and sound visualization. If you wish to create data visualizations by acquiring data from audio and visual sources, then this book is for you.Digital sound artists need to analyze, manipulate, map, and visualize data when working on a scientific or an artistic project. As an artist, this book, by means of its numerous code examples will provide you with the necessary knowledge of SuperCollider's practical applications, so that you can extract meaningful information from audio-files and master its visualization techniques. This book will help you to prototype and implement sophisticated visualizers, sonifiers, and complex mappings of your data.This book takes a closer look at SuperCollider features such as plotting and metering functionality to dispel the mysterious aura surrounding the more advanced mappings and animation strategies. This book also takes you through a number of examples that help you to create intelligent mapping and visualization systems. Throughout the course of the book, you will synthesize and optimize waveforms and spectra for scoping as well as extract information from an audio signal. The later sections of the book focus on advanced topics such as emulating physical forces, designing kinematic structures, and using neural networks to enable you to develop a visualization that has a natural motion with structures that respect anatomy and which come with an intelligent encoding mechanism. This book will teach you everything you need to work with intelligent audio-visual systems to extract and visualize audio-visual data.
Table of Contents (16 chapters)

Creating and manipulating spectra


Much unlike waveforms, which can only convey limited information on how a signal sounds, spectra, to some extent, reflect the way we perceive sound, and therefore the shape of a spectrum is a very straightforward indication of how a signal will sound. This explains why spectral synthesis techniques are very common. Here we will assume that the reader is already accustomed with basic techniques, such as additive or subtractive synthesis and amplitude/frequency modulation, and rather emphasize less obvious ways to synthesize or manipulate spectra.

Aggregating and enriching spectra

The most straightforward way to synthesize a custom spectrum would be to simply aggregate individual signals of a known spectral content together. The idea is obviously following the well-known additive synthesis paradigm, yet we extend this stratagem here to any kind of signal and not merely sinusoids. In such a context, we can use pure sine waves to pointillistically add specific...