Book Image

Learning Python

By : Fabrizio Romano
Book Image

Learning Python

By: Fabrizio Romano

Overview of this book

Learning Python has a dynamic and varied nature. It reads easily and lays a good foundation for those who are interested in digging deeper. It has a practical and example-oriented approach through which both the introductory and the advanced topics are explained. Starting with the fundamentals of programming and Python, it ends by exploring very different topics, like GUIs, web apps and data science. The book takes you all the way to creating a fully fledged application. The book begins by exploring the essentials of programming, data structures and teaches you how to manipulate them. It then moves on to controlling the flow of a program and writing reusable and error proof code. You will then explore different programming paradigms that will allow you to find the best approach to any situation, and also learn how to perform performance optimization as well as effective debugging. Throughout, the book steers you through the various types of applications, and it concludes with a complete mini website built upon all the concepts that you learned.
Table of Contents (20 chapters)
Learning Python
Credits
About the Author
Acknowledgements
About the Reviewers
www.PacktPub.com
Preface
Index

Writing a custom iterator


Now we have all the tools to appreciate how we can write our own custom iterator. Let's first define what is an iterable and an iterator:

  • Iterable: An object is said to be iterable if it's capable of returning its members one at a time. Lists, tuples, strings, dicts, are all iterables. Custom objects that define either of __iter__ or __getitem__ methods are also iterables.

  • Iterator: An object is said to be an iterator if it represents a stream of data. A custom iterator is required to provide an implementation for __iter__ that returns the object itself, and an implementation for __next__, which returns the next item of the data stream until the stream is exhausted, at which point all successive calls to __next__ simply raise the StopIteration exception. Built-in functions such as iter and next are mapped to call __iter__ and __next__ on an object, behind the scenes.

Let's write an iterator that returns all the odd characters from a string first, and then the even...