Book Image

Mastering Git

5 (1)
Book Image

Mastering Git

5 (1)

Overview of this book

Git is one of the most popular types of Source Code Management (SCM) and Distributed Version Control System (DVCS). Despite the powerful and versatile nature of the tool enveloping strong support for nonlinear development and the ability to handle large projects efficiently, it is a complex tool and often regarded as “user-unfriendly”. Getting to know the ideas and concepts behind the architecture of Git will help you make full use of its power and understand its behavior. Learning the best practices and recommended workflows should help you to avoid problems and ensure trouble-free development. The book scope is meticulously designed to help you gain deeper insights into Git's architecture, its underlying concepts, behavior, and best practices. Mastering Git starts with a quick implementation example of using Git for a collaborative development of a sample project to establish the foundation knowledge of Git operational tasks and concepts. Furthermore, as you progress through the book, the tutorials provide detailed descriptions of various areas of usage: from archaeology, through managing your own work, to working with other developers. This book also helps augment your understanding to examine and explore project history, create and manage your contributions, set up repositories and branches for collaboration in centralized and distributed version control, integrate work from other developers, customize and extend Git, and recover from repository errors. By exploring advanced Git practices, you will attain a deeper understanding of Git’s behavior, allowing you to customize and extend existing recipes and write your own.
Table of Contents (19 chapters)
Mastering Git
Credits
About the Author
About the Reviewer
www.PacktPub.com
Preface
Index

Chain of trust


An important part of collaborative efforts during the development of a project is ensuring the quality of its code. This includes protection against the accidental corruption of the repository, and unfortunately also from malicious intent—a task that the version control system can help with. Git needs to ensure trust in the repository contents: your own and other developers' (including especially the canonical repository of the project).

Content-addressed storage

In Chapter 2, Exploring Project History, we learned that Git uses SHA-1 hashes as a native identifier of commit objects (which represent revisions of the project, and form its history). This mechanism makes it possible to generate commit identifiers in a distributed way, taking the SHA-1 cryptographic hash function of the commit object link to the previous commit (the SHA-1 identifier of the parent commit) included.

Moreover, all other data stored in the repository (including the file contents in the revision represented...