Book Image

Mastering C# Concurrency

Book Image

Mastering C# Concurrency

Overview of this book

Starting with the traditional approach to concurrency, you will learn how to write multithreaded concurrent programs and compose ways that won't require locking. You will explore the concepts of parallelism granularity, and fine-grained and coarse-grained parallel tasks by choosing a concurrent program structure and parallelizing the workload optimally. You will also learn how to use task parallel library, cancellations, timeouts, and how to handle errors. You will know how to choose the appropriate data structure for a specific parallel algorithm to achieve scalability and performance. Further, you'll learn about server scalability, asynchronous I/O, and thread pools, and write responsive traditional Windows and Windows Store applications. By the end of the book, you will be able to diagnose and resolve typical problems that could happen in multithreaded applications.
Table of Contents (17 chapters)
Mastering C# Concurrency
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

Implementing a custom awaitable type


Until now we have only used Task with the await operator. However, it is not the only type that is compatible with await. Actually, the await operator can be used with every type that contains the GetAwaiter method with no parameters and the return type that does the following:

  • Implements the INotifyCompletion interface

  • Contains the IsCompleted boolean property

  • Has the GetResult method with no parameters

This method can even be an extension method, so it is possible to extend the existing types and add the await compatibility to them. In this example, we will create such a method for the Uri type. This method will download content as a string via HTTP from the address provided in the Uri instance:

private static TaskAwaiter<string> GetAwaiter(this Uri url)
{
  return new HttpClient().GetStringAsync(url).GetAwaiter();
}

var content = await new Uri("http://google.com");
Console.WriteLine(content.Substring(0, 10));

If we run this, we will see the first...