Book Image

Mastering Python

By : Rick van Hattem
Book Image

Mastering Python

By: Rick van Hattem

Overview of this book

Python is a dynamic programming language. It is known for its high readability and hence it is often the first language learned by new programmers. Python being multi-paradigm, it can be used to achieve the same thing in different ways and it is compatible across different platforms. Even if you find writing Python code easy, writing code that is efficient, easy to maintain, and reuse is not so straightforward. This book is an authoritative guide that will help you learn new advanced methods in a clear and contextualised way. It starts off by creating a project-specific environment using venv, introducing you to different Pythonic syntax and common pitfalls before moving on to cover the functional features in Python. It covers how to create different decorators, generators, and metaclasses. It also introduces you to functools.wraps and coroutines and how they work. Later on you will learn to use asyncio module for asynchronous clients and servers. You will also get familiar with different testing systems such as py.test, doctest, and unittest, and debugging tools such as Python debugger and faulthandler. You will learn to optimize application performance so that it works efficiently across multiple machines and Python versions. Finally, it will teach you how to access C functions with a simple Python call. By the end of the book, you will be able to write more advanced scripts and take on bigger challenges.
Table of Contents (22 chapters)
Mastering Python
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
6
Generators and Coroutines – Infinity, One Step at a Time
Index

Dynamically creating classes


Metaclasses are the factories that create new classes in Python. In fact, even though you may not be aware of it, Python will always execute the type metaclass whenever you create a class.

When creating classes in a procedural way, the type metaclass is used as a function. This function takes three arguments: name, bases, and dict. The name will become the __name__ attribute, the bases is the list of inherited base classes and will be stored in __bases__ and dict is the namespace dictionary that contains all variables and will be stored in __dict__.

It should be noted that the type() function has another use as well. Given the arguments documented earlier, it creates a class given those specifications. Given a single argument with the instance of a class, it will return the class as well but from the instance. Your next question might be, "What happens if I call type() on a class definition instead of a class instance?" Well, that returns the metaclass for the...