Book Image

Learning Python Design Patterns - Second Edition - Second Edition

By : Chetan Giridhar, Gennadiy Zlobin
Book Image

Learning Python Design Patterns - Second Edition - Second Edition

By: Chetan Giridhar, Gennadiy Zlobin

Overview of this book

With the increasing focus on optimized software architecture and design it is important that software architects think about optimizations in object creation, code structure, and interaction between objects at the architecture or design level. This makes sure that the cost of software maintenance is low and code can be easily reused or is adaptable to change. The key to this is reusability and low maintenance in design patterns. Building on the success of the previous edition, Learning Python Design Patterns, Second Edition will help you implement real-world scenarios with Python’s latest release, Python v3.5. We start by introducing design patterns from the Python perspective. As you progress through the book, you will learn about Singleton patterns, Factory patterns, and Façade patterns in detail. After this, we’ll look at how to control object access with proxy patterns. It also covers observer patterns, command patterns, and compound patterns. By the end of the book, you will have enhanced your professional abilities in software architecture, design, and development.
Table of Contents (19 chapters)
Learning Python Design Patterns Second Edition
Credits
Foreword
About the Author
About the Reviewer
www.PacktPub.com
Preface
Index

Understanding the Factory pattern


In object-oriented programming, the term factory means a class that is responsible for creating objects of other types. Typically, the class that acts as a factory has an object and methods associated with it. The client calls this method with certain parameters; objects of desired types are created in turn and returned to the client by the factory.

So the question here really is, why do we need a factory when the client can directly create an object? The answer is, a factory provides certain advantages that are listed here:

  • The first advantage is loose coupling in which object creation can be independent of the class implementation.

  • The client need not be aware of the class that creates the object which, in turn, is utilized by the client. It is only necessary to know the interface, methods, and parameters that need to be passed to create objects of the desired type. This simplifies implementations for the client.

  • Adding another class to the factory to create...