Book Image

Learning Functional Data Structures and Algorithms

By : Raju Kumar Mishra
Book Image

Learning Functional Data Structures and Algorithms

By: Raju Kumar Mishra

Overview of this book

Functional data structures have the power to improve the codebase of an application and improve efficiency. With the advent of functional programming and with powerful functional languages such as Scala, Clojure and Elixir becoming part of important enterprise applications, functional data structures have gained an important place in the developer toolkit. Immutability is a cornerstone of functional programming. Immutable and persistent data structures are thread safe by definition and hence very appealing for writing robust concurrent programs. How do we express traditional algorithms in functional setting? Won’t we end up copying too much? Do we trade performance for versioned data structures? This book attempts to answer these questions by looking at functional implementations of traditional algorithms. It begins with a refresher and consolidation of what functional programming is all about. Next, you’ll get to know about Lists, the work horse data type for most functional languages. We show what structural sharing means and how it helps to make immutable data structures efficient and practical. Scala is the primary implementation languages for most of the examples. At times, we also present Clojure snippets to illustrate the underlying fundamental theme. While writing code, we use ADTs (abstract data types). Stacks, Queues, Trees and Graphs are all familiar ADTs. You will see how these ADTs are implemented in a functional setting. We look at implementation techniques like amortization and lazy evaluation to ensure efficiency. By the end of the book, you will be able to write efficient functional data structures and algorithms for your applications.
Table of Contents (20 chapters)
Learning Functional Data Structures and Algorithms
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Vectors versus lists


Prepending an element to a linked list is very fast. In fact, it is an O(1) operation, meaning the original list is simply pointed at by the new element node. The change happens only at the head of the list. As we don't need to traverse the list at all, this is a fixed cost, that is, O(1) operation.

Accessing an element at some index n is slower, meaning it is proportional to the number of elements in the list. We need to start at the head and keep traversing the nodes and keep counting. We do this until we reach the nth node. If we access the second last node, we will have traversed almost all of the list.

When any operation could make us look at almost all the elements, the complexity would be O(n). This means it would be proportional to the number of elements.

On the other hand, appending an element to a list is costly when we need to preserve the original list. In the next chapter, we need to traverse and copy all the elements, so we will preserve the current version...