Book Image

Learning Concurrent Programming in Scala - Second Edition

By : Aleksandar Prokopec
Book Image

Learning Concurrent Programming in Scala - Second Edition

By: Aleksandar Prokopec

Overview of this book

Scala is a modern, multiparadigm programming language designed to express common programming patterns in a concise, elegant, and type-safe way. Scala smoothly integrates the features of object-oriented and functional languages. In this second edition, you will find updated coverage of the Scala 2.12 platform. The Scala 2.12 series targets Java 8 and requires it for execution. The book starts by introducing you to the foundations of concurrent programming on the JVM, outlining the basics of the Java Memory Model, and then shows some of the classic building blocks of concurrency, such as the atomic variables, thread pools, and concurrent data structures, along with the caveats of traditional concurrency. The book then walks you through different high-level concurrency abstractions, each tailored toward a specific class of programming tasks, while touching on the latest advancements of async programming capabilities of Scala. It also covers some useful patterns and idioms to use with the techniques described. Finally, the book presents an overview of when to use which concurrency library and demonstrates how they all work together, and then presents new exciting approaches to building concurrent and distributed systems. Who this book is written for If you are a Scala programmer with no prior knowledge of concurrent programming, or seeking to broaden your existing knowledge about concurrency, this book is for you. Basic knowledge of the Scala programming language will be helpful.
Table of Contents (19 chapters)
Learning Concurrent Programming in Scala - Second Edition
Credits
Foreword
About the Author
Acknowledgements
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface

Promises


In Chapter 2, Concurrency on the JVM and the Java Memory Model, we implemented an asynchronous method that used a worker thread and a task queue to receive and execute asynchronous computations. That example should have left you with a basic intuition about how the execute method is implemented in execution contexts. You might be wondering how the Future.apply method can return and complete a Future object. We will study promises in this section to answer this question. Promises are objects that can be assigned a value or an exception only once. This is why promises are sometimes also called single-assignment variables. A promise is represented with the Promise[T] type in Scala. To create a promise instance, we use the Promise.apply method on the Promise companion object:

def apply[T](): Promise[T] 

This method returns a new promise instance. Like the Future.apply method, the Promise.apply method returns immediately; it is non-blocking. However, the Promise.apply method does not...