Book Image

Mastering OpenCV 3 - Second Edition

By : Jason Saragih
Book Image

Mastering OpenCV 3 - Second Edition

By: Jason Saragih

Overview of this book

As we become more capable of handling data in every kind, we are becoming more reliant on visual input and what we can do with those self-driving cars, face recognition, and even augmented reality applications and games. This is all powered by Computer Vision. This book will put you straight to work in creating powerful and unique computer vision applications. Each chapter is structured around a central project and deep dives into an important aspect of OpenCV such as facial recognition, image target tracking, making augmented reality applications, the 3D visualization framework, and machine learning. You’ll learn how to make AI that can remember and use neural networks to help your applications learn. By the end of the book, you will have created various working prototypes with the projects in the book and will be well versed with the new features of OpenCV3.
Table of Contents (14 chapters)
Title Page
Mastering OpenCV 3 Second Edition
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Reconstructing the scene


Next, we look into the matter of recovering the 3D structure of the scene from the information we have acquired so far. As we had done before, we should look at the tools and information we have at hand to achieve this. In the preceding section, we obtained two camera matrices from the essential matrix; we already discussed how these tools would be useful for obtaining the 3D position of a point in space. Then, we can go back to our matched point pairs to fill in our equations with numerical data. The point pairs will also be useful in calculating the error we get from all our approximate calculations.

This is the time to see how we can perform triangulation using OpenCV. Luckily, OpenCV supplies us with a number of functions that make this process easy to implement: triangulatePoints, undistortPoints, and convertPointsFromHomogeneous.

Remember we had two key equations arising from the 2D point matching and P matrices: x=PX and x'= P'X, where x and x' are matching...