Book Image

Python Data Structures and Algorithms

By : Benjamin Baka
Book Image

Python Data Structures and Algorithms

By: Benjamin Baka

Overview of this book

Data structures allow you to organize data in a particular way efficiently. They are critical to any problem, provide a complete solution, and act like reusable code. In this book, you will learn the essential Python data structures and the most common algorithms. With this easy-to-read book, you will be able to understand the power of linked lists, double linked lists, and circular linked lists. You will be able to create complex data structures such as graphs, stacks and queues. We will explore the application of binary searches and binary search trees. You will learn the common techniques and structures used in tasks such as preprocessing, modeling, and transforming data. We will also discuss how to organize your code in a manageable, consistent, and extendable way. The book will explore in detail sorting algorithms such as bubble sort, selection sort, insertion sort, and merge sort. By the end of the book, you will learn how to build components that are easy to understand, debug, and use in different applications.
Table of Contents (20 chapters)
Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
5
Stacks and Queues
7
Hashing and Symbol Tables

Graph representation


Graphs can be represented in two main forms. One way is to use an adjacency matrix and the other is to use an adjacency list.

We shall be working with the following figure to develop both types of representation for graphs:

Adjacency list

A simple list can be used to present a graph. The indices of the list will represent the nodes or vertices in the graph. At each index, the adjacent nodes to that vertex can be stored:

The numbers in the box represent the vertices. Index 0 represents vertex A, with its adjacent nodes being B and C.

Using a list for the representation is quite restrictive because we lack the ability to directly use the vertex labels. A dictionary is therefore more suited. To represent the graph in the diagram, we can use the following statements:

    graph = dict() 
    graph['A'] = ['B', 'C'] 
    graph['B'] = ['E','A'] 
    graph['C'] = ['A', 'B', 'E','F'] 
    graph['E'] = ['B', 'C'] 
    graph['F'] = ['C'] 

Now we easy establish that vertex A has the adjacent...