Book Image

Modern Python Cookbook

Book Image

Modern Python Cookbook

Overview of this book

Python is the preferred choice of developers, engineers, data scientists, and hobbyists everywhere. It is a great scripting language that can power your applications and provide great speed, safety, and scalability. By exposing Python as a series of simple recipes, you can gain insight into specific language features in a particular context. Having a tangible context helps make the language or standard library feature easier to understand. This book comes with over 100 recipes on the latest version of Python. The recipes will benefit everyone ranging from beginner to an expert. The book is broken down into 13 chapters that build from simple language concepts to more complex applications of the language. The recipes will touch upon all the necessary Python concepts related to data structures, OOP, functional programming, as well as statistical programming. You will get acquainted with the nuances of Python syntax and how to effectively use the advantages that it offers. You will end the book equipped with the knowledge of testing, web services, and configuration and application integration tips and tricks. The recipes take a problem-solution approach to resolve issues commonly faced by Python programmers across the globe. You will be armed with the knowledge of creating applications with flexible logging, powerful configuration, and command-line options, automated unit tests, and good documentation.
Table of Contents (18 chapters)
Title Page
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Using set methods and operators


We have several ways to build a set collection. We can use the set() function to convert an existing collection to a set. We can use the add() method to put items into a set. We can also use the update() method and the union operator, |, to create a larger set from other sets.

We'll show a recipe that uses a set to show whether or not we've seen a complete domain of values from a pool of statistical data. The recipe will build a set collection as the samples are being scanned.

When doing exploratory data analysis, we need to answer the question: Is this data random? Many data collections have variances in the data that are ordinary noise. It's important not to waste time doing complex modeling and analysis of random numbers.

For discrete or continuous numeric data, like the depth of water in meters, or the size of a file in bytes, we can use averages and standard deviations to see if a given collection of data is random. We expect a sample's mean to match the...