Book Image

Modern Python Cookbook

Book Image

Modern Python Cookbook

Overview of this book

Python is the preferred choice of developers, engineers, data scientists, and hobbyists everywhere. It is a great scripting language that can power your applications and provide great speed, safety, and scalability. By exposing Python as a series of simple recipes, you can gain insight into specific language features in a particular context. Having a tangible context helps make the language or standard library feature easier to understand. This book comes with over 100 recipes on the latest version of Python. The recipes will benefit everyone ranging from beginner to an expert. The book is broken down into 13 chapters that build from simple language concepts to more complex applications of the language. The recipes will touch upon all the necessary Python concepts related to data structures, OOP, functional programming, as well as statistical programming. You will get acquainted with the nuances of Python syntax and how to effectively use the advantages that it offers. You will end the book equipped with the knowledge of testing, web services, and configuration and application integration tips and tricks. The recipes take a problem-solution approach to resolve issues commonly faced by Python programmers across the globe. You will be armed with the knowledge of creating applications with flexible logging, powerful configuration, and command-line options, automated unit tests, and good documentation.
Table of Contents (18 chapters)
Title Page
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Testing functions that raise exceptions


Good Python includes docstrings inside every module, class, function, and method. Many tools can create useful, informative documentation from these docstrings.

One important element of a docstring is an example. The example becomes a kind of unit test case. Doctest does simple, literal matching of the expected output against the actual output.

When an example raises an exception, though, the traceback messages from Python are not always identical. It may include object ID values that change or module line numbers which may vary slightly depending on the context in which the test is executed. The literal matching rules for doctest aren't appropriate when exceptions are involved.

How can we turn exception processing and the resulting traceback messages into proper test cases?

Getting ready

We'll look at a simple function definition as well as a simple class definition. Each of these will include docstrings that include examples which can be used as formal...