Book Image

OpenCV 3 Computer Vision Application Programming Cookbook - Third Edition

By : Robert Laganiere
Book Image

OpenCV 3 Computer Vision Application Programming Cookbook - Third Edition

By: Robert Laganiere

Overview of this book

Making your applications see has never been easier with OpenCV. With it, you can teach your robot how to follow your cat, write a program to correctly identify the members of One Direction, or even help you find the right colors for your redecoration. OpenCV 3 Computer Vision Application Programming Cookbook Third Edition provides a complete introduction to the OpenCV library and explains how to build your first computer vision program. You will be presented with a variety of computer vision algorithms and exposed to important concepts in image and video analysis that will enable you to build your own computer vision applications. This book helps you to get started with the library, and shows you how to install and deploy the OpenCV library to write effective computer vision applications following good programming practices. You will learn how to read and write images and manipulate their pixels. Different techniques for image enhancement and shape analysis will be presented. You will learn how to detect specific image features such as lines, circles or corners. You will be introduced to the concepts of mathematical morphology and image filtering. The most recent methods for image matching and object recognition are described, and you’ll discover how to process video from files or cameras, as well as how to detect and track moving objects. Techniques to achieve camera calibration and perform multiple-view analysis will also be explained. Finally, you’ll also get acquainted with recent approaches in machine learning and object classification.
Table of Contents (21 chapters)
OpenCV 3 Computer Vision Application Programming Cookbook - Third Edition
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Accessing pixel values


In order to access each individual element of a matrix, you just need to specify its row and column numbers. The corresponding element, which can be a single numerical value or a vector of values in the case of a multi-channel image, will be returned.

Getting ready

To illustrate the direct access to pixel values, we will create a simple function that adds salt-and-pepper noise to an image. As the name suggests, salt-and-pepper noise is a particular type of noise in which some randomly selected pixels are replaced by a white or a black pixel. This type of noise can occur in faulty communications when the value of some pixels is lost during the transmission. In our case, we will simply randomly select a few pixels and assign them a white color.

How to do it...

We create a function that receives an input image. This is the image that will be modified by our function. The second parameter is the number of pixels on which we want to overwrite white values:

    void salt(cv:...