Book Image

Solidity Programming Essentials

Book Image

Solidity Programming Essentials

Overview of this book

Solidity is a contract-oriented language whose syntax is highly influenced by JavaScript, and is designed to compile code for the Ethereum Virtual Machine. Solidity Programming Essentials will be your guide to understanding Solidity programming to build smart contracts for Ethereum and blockchain from ground-up. We begin with a brief run-through of blockchain, Ethereum, and their most important concepts or components. You will learn how to install all the necessary tools to write, test, and debug Solidity contracts on Ethereum. Then, you will explore the layout of a Solidity source file and work with the different data types. The next set of recipes will help you work with operators, control structures, and data structures while building your smart contracts. We take you through function calls, return types, function modifers, and recipes in object-oriented programming with Solidity. Learn all you can on event logging and exception handling, as well as testing and debugging smart contracts. By the end of this book, you will be able to write, deploy, and test smart contracts in Ethereum. This book will bring forth the essence of writing contracts using Solidity and also help you develop Solidity skills in no time.
Table of Contents (17 chapters)
Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
Index

Ethereum accounts


Accounts are the main building blocks for the Ethereum ecosystem. It is an interaction between accounts that Ethereum wants to store as transactions in its ledger. There are two types of accounts available in Ethereum—externally owned accounts and contract accounts. Each account, by default, has a property named balance that helps in querying the current balance of Ether.

Externally owned accounts

Externally owned accounts are accounts that are owned by people on Ethereum. Accounts are not referred to by name in Ethereum. When an externally owned account is created on Ethereum by an individual, a public/private key is generated. The private key is kept safe with the individual while the public key becomes the identity of this externally owned account. This public key is generally of 256 characters, however, Ethereum uses the first 160 characters to represent the identity of an account.

If Bob, for example, creates an account on an Ethereum network—whether private or public, he will have his private key available to himself while the first 160 characters of his public key will become his identity. Other accounts on the network can then send Ether or other cryptocurrencies based on Ether to this account.

An account on Ethereum looks like the one shown in the following screenshot:

An externally owned account can hold Ether in its balance and does not have any code associated with it. It can execute transactions with other externally owned accounts and it can also execute transactions by invoking functions within contracts.

Contract accounts

Contract accounts are very similar to externally owned accounts. They are identified using their public address. They do not have a private key. They can hold Ether similar to externally owned accounts; however, they contain code—code for smart contracts consisting of functions and state variables.