Book Image

Hands-On GUI Application Development in Go

By : Andrew Williams
Book Image

Hands-On GUI Application Development in Go

By: Andrew Williams

Overview of this book

Go is often compared to C++ when it comes to low-level programming and implementations that require faster processing, such as Graphical User Interfaces (GUIs). In fact, many claim that Go is superior to C++ in terms of its concurrency and ease of use. Most graphical application toolkits, though, are still written using C or C++, and so they don't enjoy the benefits of using a modern programming language such as Go. This guide to programming GUIs with Go 1.11 explores the various toolkits available, including UI, Walk, Shiny, and Fyne. The book compares the vision behind each project to help you pick the right approach for your project. Each framework is described in detail, outlining how you can build performant applications that users will love. To aid you further in creating applications using these emerging technologies, you'll be able to easily refer to code samples and screenshots featured in the book. In addition to toolkit-specific discussions, you'll cover more complex topics, such as how to structure growing graphical applications, and how cross-platform applications can integrate with each desktop operating system to create a seamless user experience. By delving into techniques and best practices for organizing and scaling Go-based graphical applications, you'll also glimpse Go's impressive concurrency system. In the concluding chapters, you'll discover how to distribute to the main desktop marketplaces and distribution channels. By the end of this book, you'll be a confident GUI developer who can use the Go language to boost the performance of your applications.
Table of Contents (25 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
Comparison of GUI Toolkits
Index

Reliability and offline functionality


One benefit of great applications is their ability to work online and offline, even to deal with an internet connection that's unreliable. For example, blog applications that allow authoring but don't need the internet until you publish, or document editors that download all of your work and share any changes you make with a central location any time you're online, have significant benefits over any web app with an always-online approach. Desktop computers and even newer smart phones have significant processing power and storage, and as application developers, we should make the most of the resources available. User experience is not limited to design and system integration, but also the responsiveness and workflow of an application. If we can hide the complexities of a process or technology from end users, we may find them coming back to the application frequently—even if their internet connection is currently unavailable.

While caching (keeping downloaded content around for offline work) is a relatively easy problem to solve, synchronization (combining all changes made from various locations) is not. Thankfully, native applications have tools available to assist with this complicated task, whether through a platform toolkit (such as Apple's CloudKit for iCloud) or by use of third-party technology (such as Dropbox's API or Firebase's offline capabilities for iOS and Android). Due to the incredible rise in popularity of mobile apps most development is focused there, but many of these technologies apply just as well to native applications on the desktop.

Web technologies continue to make strides in providing increased reliability and offline capabilities, but they are a long way from meeting the standards expected of native graphical applications.