Book Image

Mastering Concurrency in Python

By : Quan Nguyen
Book Image

Mastering Concurrency in Python

By: Quan Nguyen

Overview of this book

Python is one of the most popular programming languages, with numerous libraries and frameworks that facilitate high-performance computing. Concurrency and parallelism in Python are essential when it comes to multiprocessing and multithreading; they behave differently, but their common aim is to reduce the execution time. This book serves as a comprehensive introduction to various advanced concepts in concurrent engineering and programming. Mastering Concurrency in Python starts by introducing the concepts and principles in concurrency, right from Amdahl's Law to multithreading programming, followed by elucidating multiprocessing programming, web scraping, and asynchronous I/O, together with common problems that engineers and programmers face in concurrent programming. Next, the book covers a number of advanced concepts in Python concurrency and how they interact with the Python ecosystem, including the Global Interpreter Lock (GIL). Finally, you'll learn how to solve real-world concurrency problems through examples. By the end of the book, you will have gained extensive theoretical knowledge of concurrency and the ways in which concurrency is supported by the Python language
Table of Contents (22 chapters)

Example implementation in Python

As we mentioned previously, due to their communicative and associative properties, reduction operators can have their partial tasks created and processed independently, and this is where concurrency can be applied. To truly understand how a reduction operator utilizes concurrency, let's try implementing a concurrent, multiprocessing reduction operator from scratchspecifically the add operator.

Similar to what we saw in the previous chapter, in this example, we will be using a task queue and a result queue to facilitate our interprocess communication. Specifically, the program will store all of the numbers in the input array in the task queue as individual tasks. As each of our consumers (individual processes) executes, it will call get() on the task queue twice to obtain two task numbers (except for some edge cases where there is no...