Book Image

Python 3 Object-Oriented Programming - Third Edition

By : Dusty Phillips
Book Image

Python 3 Object-Oriented Programming - Third Edition

By: Dusty Phillips

Overview of this book

Object-oriented programming (OOP) is a popular design paradigm in which data and behaviors are encapsulated in such a way that they can be manipulated together. This third edition of Python 3 Object-Oriented Programming fully explains classes, data encapsulation, and exceptions with an emphasis on when you can use each principle to develop well-designed software. Starting with a detailed analysis of object-oriented programming, you will use the Python programming language to clearly grasp key concepts from the object-oriented paradigm. You will learn how to create maintainable applications by studying higher level design patterns. The book will show you the complexities of string and file manipulation, and how Python distinguishes between binary and textual data. Not one, but two very powerful automated testing systems, unittest and pytest, will be introduced in this book. You'll get a comprehensive introduction to Python's concurrent programming ecosystem. By the end of the book, you will have thoroughly learned object-oriented principles using Python syntax and be able to create robust and reliable programs confidently.
Table of Contents (15 chapters)

Filesystem paths

All operating systems provide a filesystem, a way of mapping a logical abstraction of folders (or directories) and files to the bits and bytes stored on a hard drive or other storage device. As humans, we typically interact with the filesystem using a drag-and-drop interface of folders and files of different types, or with command-line programs such as cp, mv, and mkdir.

As programmers, we have to interact with the filesystem with a series of system calls. You can think of these as library functions supplied by the operating system so that programs can call them. They have a clunky interface with integer file handles and buffered reads and writes, and that interface is different depending on which operating system you are using. Python provides an OS-independent abstraction over these system calls in the os.path module. It's a little easier to work...