Book Image

Modern C++: Efficient and Scalable Application Development

By : Richard Grimes, Marius Bancila
Book Image

Modern C++: Efficient and Scalable Application Development

By: Richard Grimes, Marius Bancila

Overview of this book

C++ is one of the most widely used programming languages. It is fast, flexible, and used to solve many programming problems. This Learning Path gives you an in-depth and hands-on experience of working with C++, using the latest recipes and understanding most recent developments. You will explore C++ programming constructs by learning about language structures, functions, and classes, which will help you identify the execution flow through code. You will also understand the importance of the C++ standard library as well as memory allocation for writing better and faster programs. Modern C++: Efficient and Scalable Application Development deals with the challenges faced with advanced C++ programming. You will work through advanced topics such as multithreading, networking, concurrency, lambda expressions, and many more recipes. By the end of this Learning Path, you will have all the skills to become a master C++ programmer. This Learning Path includes content from the following Packt products: • Beginning C++ Programming by Richard Grimes • Modern C++ Programming Cookbook by Marius Bancila • The Modern C++ Challenge by Marius Bancila
Table of Contents (24 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
12
Math Problems
13
Language Features
14
Strings and Regular Expressions
15
Streams and Filesystems
16
Date and Time
17
Algorithms and Data Structures
Index

Using range-based for loops to iterate on a range


Many programming languages support a variant of a for loop called for each, that is, repeating a group of statements over the elements of a collection. C++ did not have core language support for this until C++11. The closest feature was the general purpose algorithm from the standard library called std::for_each, that applies a function to all the elements in a range. C++11 brought language support for for each that is actually called range-based for loops. The new C++17 standard provides several improvements to the original language feature.

Getting ready

In C++11, a range-based for loop has the following general syntax:

    for ( range_declaration : range_expression ) loop_statement

To exemplify the various ways of using a range-based for loops, we will use the following functions that return sequences of elements:

    std::vector<int> getRates() 
    { 
      return std::vector<int> {1, 1, 2, 3, 5, 8, 13}; 
    } 

    std::multimap...