Book Image

Advanced Python Programming

By : Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis
Book Image

Advanced Python Programming

By: Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis

Overview of this book

This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: • Python High Performance - Second Edition by Gabriele Lanaro • Mastering Concurrency in Python by Quan Nguyen • Mastering Python Design Patterns by Sakis Kasampalis
Table of Contents (41 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Implementation


Python decorators are generic and very powerful. You can find many examples of how they can be used at the decorator library of python.org (j.mp/pydeclib). In this section, we will see how we can implement a memoization decorator (j.mp/memoi). All recursive functions can benefit from memoization, so let's try a function number_sum() that returns the sum of the first n numbers. Note that this function is already available in the math module as fsum(), but let's pretend it is not.

First, let's look at the naive implementation (the number_sum_naive.py file):

def number_sum(n): 
    '''Returns the sum of the first n numbers''' 
    assert(n >= 0), 'n must be >= 0' 

    if n == 0:
        return 0
    else:
        return n + number_sum(n-1)  

if __name__ == '__main__': 
    from timeit import Timer 
    t = Timer('number_sum(30)', 'from __main__ import number_sum')
    print('Time: ', t.timeit())

A sample execution of this example shows how slow this implementation is. It...