Book Image

Advanced Python Programming

By : Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis
Book Image

Advanced Python Programming

By: Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis

Overview of this book

This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: • Python High Performance - Second Edition by Gabriele Lanaro • Mastering Concurrency in Python by Quan Nguyen • Mastering Python Design Patterns by Sakis Kasampalis
Table of Contents (41 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Implementation


Assume that we want to create an operating system using a multi-server approach, similar to how it is done in MINIX 3 (j.mp/minix3) or GNU Hurd (j.mp/gnuhurd). A multiserver operating system has a minimal kernel, called the microkernel, which runs in privileged mode. All the other services of the system are following a server architecture (driver server, process server, file server, and so forth). Each server belongs to a different memory address space and runs on top of the microkernel in user mode. The pros of this approach are that the operating system can become more fault-tolerant, reliable, and secure. For example, since all drivers are running in user mode on a driver server, a bug in a driver cannot crash the whole system, nor can it affect the other servers. The cons of this approach are the performance overhead and the complexity of system programming, because the communication between a server and the microkernel, as well as between the independent servers, happens...