Book Image

Advanced Python Programming

By : Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis
Book Image

Advanced Python Programming

By: Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis

Overview of this book

This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: • Python High Performance - Second Edition by Gabriele Lanaro • Mastering Concurrency in Python by Quan Nguyen • Mastering Python Design Patterns by Sakis Kasampalis
Table of Contents (41 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Summary


Cython is a tool that bridges the convenience of Python with the speed of C. Compared to C bindings, Cython programs are much easier to maintain and debug, thanks to the tight integration and compatibility with Python and the availability of excellent tools.

In this chapter, we introduced the basics of the Cython language and how to make our programs faster by adding static types to our variables and functions. We also learned how to work with C arrays, NumPy arrays, and memoryviews.

We optimized our particle simulator by rewriting the critical evolve function, obtaining a tremendous speed gain. Finally, we learned how to use the annotated view to spot hard-to-find interpreter related calls and how to enable cProfile support in Cython. Also, we learned how to take advantage of the Jupyter notebook for integrated profiling and analysis of Cython codes.

In the next chapter, we will explore other tools that can generate fast machine code on the fly, without requiring compilation of our...