Book Image

Advanced Python Programming

By : Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis
Book Image

Advanced Python Programming

By: Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis

Overview of this book

This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: • Python High Performance - Second Edition by Gabriele Lanaro • Mastering Concurrency in Python by Quan Nguyen • Mastering Python Design Patterns by Sakis Kasampalis
Table of Contents (41 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Numba


Numba was started in 2012 by Travis Oliphant, the original author of NumPy, as a library for compiling individual Python functions at runtime using the Low-Level Virtual Machine (LLVM) toolchain.

LLVM is a set of tools designed to write compilers. LLVM is language agnostic and is used to write compilers for a wide range of languages (an important example is the clang compiler). One of the core aspects of LLVM is the intermediate representation (the LLVM IR), a very low-level platform-agnostic language similar to assembly, that can be compiled to machine code for the specific target platform.

Numba works by inspecting Python functions and by compiling them, using LLVM, to the IR. As we have already seen in the last chapter, the speed gains can be obtained when we introduce types for variables and functions. Numba implements clever algorithms to guess the types (this is called type inference) and compiles type-aware versions of the functions for fast execution.

Note that Numba was developed...