Book Image

Building Computer Vision Projects with OpenCV 4 and C++

By : David Millán Escrivá, Prateek Joshi, Vinícius G. Mendonça, Roy Shilkrot
Book Image

Building Computer Vision Projects with OpenCV 4 and C++

By: David Millán Escrivá, Prateek Joshi, Vinícius G. Mendonça, Roy Shilkrot

Overview of this book

OpenCV is one of the best open source libraries available and can help you focus on constructing complete projects on image processing, motion detection, and image segmentation. This Learning Path is your guide to understanding OpenCV concepts and algorithms through real-world examples and activities. Through various projects, you'll also discover how to use complex computer vision and machine learning algorithms and face detection to extract the maximum amount of information from images and videos. In later chapters, you'll learn to enhance your videos and images with optical flow analysis and background subtraction. Sections in the Learning Path will help you get to grips with text segmentation and recognition, in addition to guiding you through the basics of the new and improved deep learning modules. By the end of this Learning Path, you will have mastered commonly used computer vision techniques to build OpenCV projects from scratch. This Learning Path includes content from the following Packt books: •Mastering OpenCV 4 - Third Edition by Roy Shilkrot and David Millán Escrivá •Learn OpenCV 4 By Building Projects - Second Edition by David Millán Escrivá, Vinícius G. Mendonça, and Prateek Joshi
Table of Contents (28 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
Index

Naive background subtraction


Let's start the discussion from the beginning. What does a background subtraction process look like? Consider the following image:

The previous image represents the background scene. Now, let's introduce a new object into this scene:

As we can see, there is a new object in the scene. So, if we compute the difference between this image and our background model, you should be able to identify the location of the TV remote:

The overall process looks like this:

Does it work well?

There's a reason we call it the naive approach! It works under ideal conditions and, as we know, nothing is ideal in the real world. It does a reasonably good job of computing the shape of the given object, but it does so under some constraints. One of the main requirements of this approach is that the color and intensity of the object should be sufficiently different from that of the background. Some of the factors that affect this kind of algorithm are image noise, lighting conditions, and...