Book Image

Groovy 2 Cookbook

Book Image

Groovy 2 Cookbook

Overview of this book

Get up to speed with Groovy, a language for the Java Virtual Machine (JVM) that integrates features of both object-oriented and functional programming. This book will show you the powerful features of Groovy 2 applied to real-world scenarios and how the dynamic nature of the language makes it very simple to tackle problems that would otherwise require hours or days of research and implementation. Groovy 2 Cookbook contains a vast number of recipes covering many facets of today's programming landscape. From language-specific topics such as closures and metaprogramming, to more advanced applications of Groovy flexibility such as DSL and testing techniques, this book gives you quick solutions to everyday problems. The recipes in this book start from the basics of installing Groovy and running your first scripts and continue with progressively more advanced examples that will help you to take advantage of the language's amazing features. Packed with hundreds of tried-and-true Groovy recipes, Groovy 2 Cookbook includes code segments covering many specialized APIs to work with files and collections, manipulate XML, work with REST services and JSON, create asynchronous tasks, and more. But Groovy does more than just ease traditional Java development: it brings modern programming features to the Java platform like closures, duck-typing, and metaprogramming. In this new book, you'll find code examples that you can use in your projects right away along with a discussion about how and why the solution works. Focusing on what's useful and tricky, Groovy 2 Cookbook offers a wealth of useful code for all Java and Groovy programmers, not just advanced practitioners.
Table of Contents (17 chapters)
Groovy 2 Cookbook
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

Using Groovy as a command-line text file editor


The groovy command, which we introduced in the Executing Groovy code from the command line recipe, can also be used as a stream editor or text file filter. In this recipe, we will cover the -i, -n, and -p parameters that can be used to leverage file editing and processing functionality.

How to do it...

Assume that you have a file, data.txt, which contains five lines with numbers from 1 to 5:

  1. To multiply each number by 2, you can use the following command:

    groovy -n -e "println line.toLong() * 2" data.txt
    
  2. We can even omit the println method call if we pass additional the -p parameter to the command:

    groovy -n -p -e "line.toLong() * 2" data.txt
    
  3. In both cases, Groovy will print the following output:

    2
    4
    6
    8
    10
    

How it works...

Due to the fact that we are using the -n option, the code in double quotes is applied to each line read from the datafile specified as the last parameter in the command line. The line variable is predefined by Groovy, and you can use it to access, filter, or modify the line's content.

There's more...

If you add the -i option to the previous command, then it will actually modify the input file, with output values as follows:

groovy -i -n -p -e "line.toLong() * 2" data.txt

Adding a suffix .bak to the -i option will save the original input file data.txt under data.txt.bak:

groovy -i .bak -n -p -e "line.toLong() * 2" data.txt

You can use the -n and -p options to filter the input stream of other operating system commands. For example, if you want to filter the output of a directory listing command (dir) to show only the *.jar files, on Windows you can use the following command:

dir | groovy -n -e "if (line.contains('.jar')) println line"

Or on *nix-based operating systems, you can use the following command:

ls -la | groovy -n -e "if (line.contains('.jar')) println line"

Of course, the result of the previous commands can be easily achieved by more efficient operating system instructions. However, these examples are given to demonstrate that you can actually leverage the full power of the Groovy and Java programming languages to implement more complex processing rules.

See also

  • Executing Groovy code from the command line

  • Using Groovy to start a server on the command line