Book Image

Machine Learning with R

By : Brett Lantz
Book Image

Machine Learning with R

By: Brett Lantz

Overview of this book

Machine learning, at its core, is concerned with transforming data into actionable knowledge. This fact makes machine learning well-suited to the present-day era of "big data" and "data science". Given the growing prominence of R—a cross-platform, zero-cost statistical programming environment—there has never been a better time to start applying machine learning. Whether you are new to data science or a veteran, machine learning with R offers a powerful set of methods for quickly and easily gaining insight from your data. "Machine Learning with R" is a practical tutorial that uses hands-on examples to step through real-world application of machine learning. Without shying away from the technical details, we will explore Machine Learning with R using clear and practical examples. Well-suited to machine learning beginners or those with experience. Explore R to find the answer to all of your questions. How can we use machine learning to transform data into action? Using practical examples, we will explore how to prepare data for analysis, choose a machine learning method, and measure the success of the process. We will learn how to apply machine learning methods to a variety of common tasks including classification, prediction, forecasting, market basket analysis, and clustering. By applying the most effective machine learning methods to real-world problems, you will gain hands-on experience that will transform the way you think about data. "Machine Learning with R" will provide you with the analytical tools you need to quickly gain insight from complex data.
Table of Contents (19 chapters)
Machine Learning with R
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
9
Finding Groups of Data – Clustering with k-means
Index

Tuning stock models for better performance


Some learning problems are well suited to the stock models presented in previous chapters. In such cases, you may not need to spend much time iterating and refining the model; it may perform well enough as it is. On the other hand, some problems are inherently more difficult. The underlying concepts to be learned may be extremely complex, requiring an understanding of many subtle relationships, or it may have elements of random chance, making it difficult to define the signal within the noise.

Developing models that perform extremely well on such difficult problems is every bit an art as it is a science. Sometimes, a bit of intuition is helpful when trying to identify areas where performance can be improved. In other cases, finding improvements will require a brute-force, trial and error approach. Of course, the process of searching numerous possible improvements can be aided by the use of automated programs.

In Chapter 5, Divide and Conquer – Classification...