Book Image

Machine Learning with R

By : Brett Lantz
Book Image

Machine Learning with R

By: Brett Lantz

Overview of this book

Machine learning, at its core, is concerned with transforming data into actionable knowledge. This fact makes machine learning well-suited to the present-day era of "big data" and "data science". Given the growing prominence of R—a cross-platform, zero-cost statistical programming environment—there has never been a better time to start applying machine learning. Whether you are new to data science or a veteran, machine learning with R offers a powerful set of methods for quickly and easily gaining insight from your data. "Machine Learning with R" is a practical tutorial that uses hands-on examples to step through real-world application of machine learning. Without shying away from the technical details, we will explore Machine Learning with R using clear and practical examples. Well-suited to machine learning beginners or those with experience. Explore R to find the answer to all of your questions. How can we use machine learning to transform data into action? Using practical examples, we will explore how to prepare data for analysis, choose a machine learning method, and measure the success of the process. We will learn how to apply machine learning methods to a variety of common tasks including classification, prediction, forecasting, market basket analysis, and clustering. By applying the most effective machine learning methods to real-world problems, you will gain hands-on experience that will transform the way you think about data. "Machine Learning with R" will provide you with the analytical tools you need to quickly gain insight from complex data.
Table of Contents (19 chapters)
Machine Learning with R
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
9
Finding Groups of Data – Clustering with k-means
Index

Understanding regression trees and model trees


If you recall from Chapter 5, Divide and Conquer – Classification Using Decision Trees and Rules, a decision tree builds a model much like a flowchart in which decision nodes, leaf nodes, and branches define a series of decisions that can be used to classify examples. Such trees can also be used for numeric prediction by making only small adjustments to the tree growing algorithm. In this section, we will consider only the ways in which trees for numeric prediction differ from trees used for classification.

Trees for numeric prediction fall into two categories. The first, known as regression trees, were introduced in the 1980s as part of the seminal Classification and Regression Tree (CART) algorithm. Despite the name, regression trees do not use linear regression methods as described earlier in this chapter; rather, they make predictions based on the average value of examples that reach a leaf.

Note

The CART algorithm is described in detail in...