Book Image

Building Machine Learning Systems with Python

Book Image

Building Machine Learning Systems with Python

Overview of this book

Machine learning, the field of building systems that learn from data, is exploding on the Web and elsewhere. Python is a wonderful language in which to develop machine learning applications. As a dynamic language, it allows for fast exploration and experimentation and an increasing number of machine learning libraries are developed for Python.Building Machine Learning system with Python shows you exactly how to find patterns through raw data. The book starts by brushing up on your Python ML knowledge and introducing libraries, and then moves on to more serious projects on datasets, Modelling, Recommendations, improving recommendations through examples and sailing through sound and image processing in detail. Using open-source tools and libraries, readers will learn how to apply methods to text, images, and sounds. You will also learn how to evaluate, compare, and choose machine learning techniques. Written for Python programmers, Building Machine Learning Systems with Python teaches you how to use open-source libraries to solve real problems with machine learning. The book is based on real-world examples that the user can build on. Readers will learn how to write programs that classify the quality of StackOverflow answers or whether a music file is Jazz or Metal. They will learn regression, which is demonstrated on how to recommend movies to users. Advanced topics such as topic modeling (finding a text's most important topics), basket analysis, and cloud computing are covered as well as many other interesting aspects.Building Machine Learning Systems with Python will give you the tools and understanding required to build your own systems, which are tailored to solve your problems.
Table of Contents (20 chapters)
Building Machine Learning Systems with Python
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

Chapter 12. Big(ger) Data

While computers keep getting faster and have more memory, the size of the data has grown as well. In fact, data has grown faster than computational speed, and this means that it has grown faster than our ability to process it.

It is not easy to say what is big data and what is not, so we will adopt an operational definition: when data is so large that it becomes too cumbersome to work with, we refer to it as big data. In some areas, this might mean petabytes of data or trillions of transactions; data that will not fit into a single hard drive. In other cases, it may be one hundred times smaller, but just difficult to work with.

We will first build upon some of the experience of the previous chapters and work with what we can call the medium data setting (not quite big data, but not small either). For this we will use a package called jug, which allows us to do the following:

  • Break up your pipeline into tasks

  • Cache (memoize) intermediate results

  • Make use of multiple cores...