Book Image

Building Machine Learning Systems with Python

Book Image

Building Machine Learning Systems with Python

Overview of this book

Machine learning, the field of building systems that learn from data, is exploding on the Web and elsewhere. Python is a wonderful language in which to develop machine learning applications. As a dynamic language, it allows for fast exploration and experimentation and an increasing number of machine learning libraries are developed for Python.Building Machine Learning system with Python shows you exactly how to find patterns through raw data. The book starts by brushing up on your Python ML knowledge and introducing libraries, and then moves on to more serious projects on datasets, Modelling, Recommendations, improving recommendations through examples and sailing through sound and image processing in detail. Using open-source tools and libraries, readers will learn how to apply methods to text, images, and sounds. You will also learn how to evaluate, compare, and choose machine learning techniques. Written for Python programmers, Building Machine Learning Systems with Python teaches you how to use open-source libraries to solve real problems with machine learning. The book is based on real-world examples that the user can build on. Readers will learn how to write programs that classify the quality of StackOverflow answers or whether a music file is Jazz or Metal. They will learn regression, which is demonstrated on how to recommend movies to users. Advanced topics such as topic modeling (finding a text's most important topics), basket analysis, and cloud computing are covered as well as many other interesting aspects.Building Machine Learning Systems with Python will give you the tools and understanding required to build your own systems, which are tailored to solve your problems.
Table of Contents (20 chapters)
Building Machine Learning Systems with Python
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

A more complex dataset and a more complex classifier


We will now look at a slightly more complex dataset. This will motivate the introduction of a new classification algorithm and a few other ideas.

Learning about the Seeds dataset

We will now look at another agricultural dataset; it is still small, but now too big to comfortably plot exhaustively as we did with Iris. This is a dataset of the measurements of wheat seeds. Seven features are present, as follows:

  • Area (A)

  • Perimeter (P)

  • Compactness ()
  • Length of kernel

  • Width of kernel

  • Asymmetry coefficient

  • Length of kernel groove

There are three classes that correspond to three wheat varieties: Canadian, Koma, and Rosa. As before, the goal is to be able to classify the species based on these morphological measurements.

Unlike the Iris dataset, which was collected in the 1930s, this is a very recent dataset, and its features were automatically computed from digital images.

This is how image pattern recognition can be implemented: you can take images in...