Book Image

Learning SciPy for Numerical and Scientific Computing

By : Francisco J. Blanco-Silva
Book Image

Learning SciPy for Numerical and Scientific Computing

By: Francisco J. Blanco-Silva

Overview of this book

<p>It's essential to incorporate workflow data and code from various sources in order to create fast and effective algorithms to solve complex problems in science and engineering. Data is coming at us faster, dirtier, and at an ever increasing rate. There is no need to employ difficult-to-maintain code, or expensive mathematical engines to solve your numerical computations anymore. SciPy guarantees fast, accurate, and easy-to-code solutions to your numerical and scientific computing applications.<br /><br />"Learning SciPy for Numerical and Scientific Computing" unveils secrets to some of the most critical mathematical and scientific computing problems and will play an instrumental role in supporting your research. The book will teach you how to quickly and efficiently use different modules and routines from the SciPy library to cover the vast scope of numerical mathematics with its simplistic practical approach that's easy to follow.<br /><br />The book starts with a brief description of the SciPy libraries, showing practical demonstrations for acquiring and installing them on your system. This is followed by the second chapter which is a fun and fast-paced primer to array creation, manipulation, and problem-solving based on these techniques.<br /><br />The rest of the chapters describe the use of all different modules and routines from the SciPy libraries, through the scope of different branches of numerical mathematics. Each big field is represented: numerical analysis, linear algebra, statistics, signal processing, and computational geometry. And for each of these fields all possibilities are illustrated with clear syntax, and plenty of examples. The book then presents combinations of all these techniques to the solution of research problems in real-life scenarios for different sciences or engineering — from image compression, biological classification of species, control theory, design of wings, to structural analysis of oxides.</p>
Table of Contents (15 chapters)

Chapter 1. Introduction to SciPy

There is no denying that the labor of scientists in the 21st century is so much easier than in previous generations. This is, among other reasons, because we have reinvented discovery into Networked Science; members of any scientific community with similar goals gather in large interdisciplinary teams and cooperate together to achieve complex mission-oriented goals. This new paradigm on the approach to research is also reflected in the computational resources employed by researchers. These are not restricted any more to a single piece of commercial software, created and maintained by a lone company, but libraries of code that sit on top of programming languages. The same professionals, who require fast and robust computational tools for their everyday work, get together and create these libraries in an open-source philosophy, in such a way that the resources are thoroughly tested, and improvements occur at faster pace than any commercial product could ever offer.

This book presents the most robust programming environment till date – a system based on two libraries of the computer language Python: NumPy and SciPy. In the following sections we wish to guide you on the usage of this system, through examples of state-of-the-art research in different branches of science and engineering.