Book Image

Learning Predictive Analytics with R

By : Eric Mayor
Book Image

Learning Predictive Analytics with R

By: Eric Mayor

Overview of this book

This book is packed with easy-to-follow guidelines that explain the workings of the many key data mining tools of R, which are used to discover knowledge from your data. You will learn how to perform key predictive analytics tasks using R, such as train and test predictive models for classification and regression tasks, score new data sets and so on. All chapters will guide you in acquiring the skills in a practical way. Most chapters also include a theoretical introduction that will sharpen your understanding of the subject matter and invite you to go further. The book familiarizes you with the most common data mining tools of R, such as k-means, hierarchical regression, linear regression, association rules, principal component analysis, multilevel modeling, k-NN, Naïve Bayes, decision trees, and text mining. It also provides a description of visualization techniques using the basic visualization tools of R as well as lattice for visualizing patterns in data organized in groups. This book is invaluable for anyone fascinated by the data mining opportunities offered by GNU R and its packages.
Table of Contents (23 chapters)
Learning Predictive Analytics with R
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Exercises and Solutions
Index

Summary


In this chapter, we examined how to develop functions that perform simple regression analyses, and how to multiply regression in R using a real life example. We have examined the importance of significance tests for regression, and have briefly discussed robust regression and bootstrapping. Note that, when data about the predictors and the criterion are collected simultaneously, causation cannot be established. In order to ascertain causation, data must be collected longitudinally—that is, the predictors before the criterion.

In the next chapter, we will examine the classification of observations using the Naïve Bayes and k-Nearest Neighbor algorithms.