Book Image

Learning Predictive Analytics with Python

By : Ashish Kumar, Gary Dougan
Book Image

Learning Predictive Analytics with Python

By: Ashish Kumar, Gary Dougan

Overview of this book

Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form - It needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Learning to predict who would win, lose, buy, lie, or die with Python is an indispensable skill set to have in this data age. This book is your guide to getting started with Predictive Analytics using Python. You will see how to process data and make predictive models from it. We balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and numpy. You’ll start by getting an understanding of the basics of predictive modeling, then you will see how to cleanse your data of impurities and get it ready it for predictive modeling. You will also learn more about the best predictive modeling algorithms such as Linear Regression, Decision Trees, and Logistic Regression. Finally, you will see the best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world.
Table of Contents (19 chapters)
Learning Predictive Analytics with Python
Credits
Foreword
About the Author
Acknowledgments
About the Reviewer
www.PacktPub.com
Preface
A List of Links
Index

Chapter 8. Trees and Random Forests with Python

Clustering, discussed in the last chapter, is an unsupervised algorithm. It is now time to switch back to a supervised algorithm. Classification is a class of problems that surfaces quite frequently in predictive modelling and in various forms. Accordingly, to deal with all of them, a family of classification algorithms is used.

A decision tree is a supervised classification algorithm that is used when the target variable is a discrete or categorical variable (having two or more than two classes) and the predictor variables are either categorical or numerical variables. A decision tree can be thought of as a set of if-then rules for a classification problem where the target variables are discrete or categorical variables. The if-then rules are represented as a tree.

A decision tree is used when the decision is based on multiple-staged criteria and variables. A decision tree is very effective as a decision making tool as it has a pictorial output...