Book Image

Learning Predictive Analytics with Python

By : Ashish Kumar, Gary Dougan
Book Image

Learning Predictive Analytics with Python

By: Ashish Kumar, Gary Dougan

Overview of this book

Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form - It needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Learning to predict who would win, lose, buy, lie, or die with Python is an indispensable skill set to have in this data age. This book is your guide to getting started with Predictive Analytics using Python. You will see how to process data and make predictive models from it. We balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and numpy. You’ll start by getting an understanding of the basics of predictive modeling, then you will see how to cleanse your data of impurities and get it ready it for predictive modeling. You will also learn more about the best predictive modeling algorithms such as Linear Regression, Decision Trees, and Logistic Regression. Finally, you will see the best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world.
Table of Contents (19 chapters)
Learning Predictive Analytics with Python
Credits
Foreword
About the Author
Acknowledgments
About the Reviewer
www.PacktPub.com
Preface
A List of Links
Index

Implementing a decision tree with scikit-learn


Now, when we are sufficiently aware of the mathematics behind decision trees, let us implement a simple decision tree using the methods in scikit-learn. The dataset we will be using for this is a commonly available dataset called the iris dataset that has information about flower species and their petal and sepal dimensions. The purpose of this exercise will be to create a classifier that can classify a flower as belonging to a certain species based on the flower petal and sepal dimensions.

To do this, let's first import the dataset and have a look at it:

import pandas as pd
data=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/My Work/Chapter 7/iris.csv')
data.head()

The datasheet looks as follows:

Fig. 8.7: The first few observations of the iris dataset

Sepal-length, Sepal-width, Petal-length, and Petal-width are the dimensions of the flower while the Species denotes the class the flower belongs to. There are actually three classes of...