Book Image

Python Data Analysis Cookbook

By : Ivan Idris
Book Image

Python Data Analysis Cookbook

By: Ivan Idris

Overview of this book

Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You’ll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios.
Table of Contents (23 chapters)
Python Data Analysis Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Glossary
Index

Applying hierarchical clustering on images


We encountered the concept of hierarchical clustering in Chapter 9, Ensemble Learning and Dimensionality Reduction. In this recipe, we will segment an image by hierarchically clustering it. We will apply agglomerative clustering O(n3), which is a type of hierarchical clustering.

In agglomerative clustering, each item is assigned its own cluster at initialization. Later, these clusters merge (agglomerate) and move up the hierarchy as needed. Obviously, we only merge clusters that are similar by some measure.

After initialization, we find the pair that are closest by some distance metric and merge them. The merged cluster is a higher-level cluster consisting of lower-level clusters. After that, we again find the closest pair and merge them, and so on. During this process, clusters can have any number of items. We stop clustering after we reach a certain number of clusters, or when the clusters are too far apart.

How to do it...

  1. The imports are as follows...