Book Image

Python Data Analysis Cookbook

By : Ivan Idris
Book Image

Python Data Analysis Cookbook

By: Ivan Idris

Overview of this book

Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You’ll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios.
Table of Contents (23 chapters)
Python Data Analysis Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Glossary
Index

Fitting aggregated counts to the Poisson distribution


The Poisson distribution is named after the French mathematician Poisson, who published a thesis about it in 1837. The Poisson distribution is a discrete distribution usually associated with counts for a fixed interval of time or space. It is only defined for integer values k. For instance, we could apply it to monthly counts of rainy days. In this case, we implicitly assume that the event of a rainy day occurs at a fixed monthly rate. The goal of fitting the data to the Poisson distribution is to find the fixed rate.

The following equations describe the probability mass function (3.5) and rate parameter (3.6) of the Poisson distribution:

How to do it...

The following steps fit using the maximum likelihood estimation (MLE) method:

  1. The imports are as follows:

    from scipy.stats.distributions import poisson
    import matplotlib.pyplot as plt
    import dautil as dl
    from scipy.optimize import minimize
    from IPython.html.widgets.interaction import interactive...