Book Image

Python Data Analysis Cookbook

By : Ivan Idris
Book Image

Python Data Analysis Cookbook

By: Ivan Idris

Overview of this book

Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You’ll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios.
Table of Contents (23 chapters)
Python Data Analysis Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Glossary
Index

Sampling with probability weights


To create the nuclear bomb during the Second World War, physicists needed to perform pretty complicated calculations. Stanislaw Ulam got the idea to treat this challenge as a game of chance. Later, the method he came up with was given the code name Monte Carlo. Games of chance usually have very simple rules, but playing in an optimal way can be difficult. According to quantum mechanics, subatomic particles are also unpredictable. If we simulate many experiments with subatomic particles, we still can get an idea of how they are likely to behave. The Monte Carlo method is not deterministic, but it approaches the correct result for a complex computation for a sufficiently large number of simulations.

The statsmodels.distributions.empirical_distribution.ECDF class defines the cumulative distribution function of a data array. We can use its output to simulate a complex process. This simulation is not perfect, because we lose information in the process.

How to do...