Book Image

Python Data Analysis Cookbook

By : Ivan Idris
Book Image

Python Data Analysis Cookbook

By: Ivan Idris

Overview of this book

Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You’ll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios.
Table of Contents (23 chapters)
Python Data Analysis Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Glossary
Index

Stemming, lemmatizing, filtering, and TF-IDF scores


The bag-of-words model represents a corpus literally as a bag of words, not taking into account the position of the words—only their count. Stop words are common words such as "a", "is," and "the", which don't add information value.

TF-IDF scores can be computed for single words (unigrams) or combinations of multiple consecutive words (n-grams). TF-IDF is roughly the ratio of term frequency and inverse document frequency. I say "roughly" because we usually take the logarithm of the ratio or apply a weighting scheme. Term frequency is the frequency of a word or n-gram in a document. The inverse document frequency is the inverse of the number of documents in which the word or n-gram occurs. We can use TF-IDF scores for clustering or as a feature of classification. In the Extracting topics with non-negative matrix factorization recipe, we will use the scores to discover topics.

NLTK represents the scores by a sparse matrix with one row for each...