Book Image

Mastering Machine Learning with Spark 2.x

By : Michal Malohlava, Alex Tellez, Max Pumperla
Book Image

Mastering Machine Learning with Spark 2.x

By: Michal Malohlava, Alex Tellez, Max Pumperla

Overview of this book

The purpose of machine learning is to build systems that learn from data. Being able to understand trends and patterns in complex data is critical to success; it is one of the key strategies to unlock growth in the challenging contemporary marketplace today. With the meteoric rise of machine learning, developers are now keen on finding out how can they make their Spark applications smarter. This book gives you access to transform data into actionable knowledge. The book commences by defining machine learning primitives by the MLlib and H2O libraries. You will learn how to use Binary classification to detect the Higgs Boson particle in the huge amount of data produced by CERN particle collider and classify daily health activities using ensemble Methods for Multi-Class Classification. Next, you will solve a typical regression problem involving flight delay predictions and write sophisticated Spark pipelines. You will analyze Twitter data with help of the doc2vec algorithm and K-means clustering. Finally, you will build different pattern mining models using MLlib, perform complex manipulation of DataFrames using Spark and Spark SQL, and deploy your app in a Spark streaming environment.
Table of Contents (9 chapters)
3
Ensemble Methods for Multi-Class Classification

Type I versus type II error

Binary classifiers have intuitive interpretation since they are trying to separate data points into two groups. This sounds simple, but we need to have some notion of measuring the quality of this separation. Furthermore, one important characteristic of a binary classification problem is that, often, the proportion of one group of labels versus the other can be disproportionate. That means the dataset may be imbalanced with respect to one label which necessitates careful interpretation by the data scientist.

Suppose, for example, we are trying to detect the presence of a particular rare disease in a population of 15 million people and we discover that - using a large subset of the population - only 10,000 or 10 million individuals actually carry the disease. Without taking this huge disproportion into consideration, the most naive algorithm would guess...