Book Image

Machine Learning With Go

Book Image

Machine Learning With Go

Overview of this book

The mission of this book is to turn readers into productive, innovative data analysts who leverage Go to build robust and valuable applications. To this end, the book clearly introduces the technical aspects of building predictive models in Go, but it also helps the reader understand how machine learning workflows are being applied in real-world scenarios. Machine Learning with Go shows readers how to be productive in machine learning while also producing applications that maintain a high level of integrity. It also gives readers patterns to overcome challenges that are often encountered when trying to integrate machine learning in an engineering organization. The readers will begin by gaining a solid understanding of how to gather, organize, and parse real-work data from a variety of sources. Readers will then develop a solid statistical toolkit that will allow them to quickly understand gain intuition about the content of a dataset. Finally, the readers will gain hands-on experience implementing essential machine learning techniques (regression, classification, clustering, and so on) with the relevant Go packages. Finally, the reader will have a solid machine learning mindset and a powerful Go toolkit of techniques, packages, and example implementations.
Table of Contents (11 chapters)

Gradient descent

In multiple examples (including those in Chapter 4, Regression and Chapter 5, Classification), we took advantage of an optimization technique called gradient descent. There are multiple variants of the gradient descent method, and, in general, you will see them pretty much everywhere in the machine learning world. Most prominently, they are utilized in the determination of optimal coefficients for algorithms such as linear or logistic regression, and thus, they often also play a role in more complicated techniques at least partially based on linear/logistic regression (such as neural networks).

The general idea of gradient descent methods is to determine a direction and magnitude of change in some parameters that will move you in the right direction to optimize some measure (such as error). Think about standing on some landscape. To move toward lower elevations...