Book Image

IPython Interactive Computing and Visualization Cookbook - Second Edition

By : Cyrille Rossant
Book Image

IPython Interactive Computing and Visualization Cookbook - Second Edition

By: Cyrille Rossant

Overview of this book

Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform. IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning. The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics.
Table of Contents (19 chapters)
IPython Interactive Computing and Visualization CookbookSecond Edition
Contributors
Preface
Index

Introduction


In the previous chapters, we reviewed technical aspects of high-performance interactive computing in Python. We now begin the second part of this book by illustrating a variety of scientific questions that can be tackled with Python.

In this chapter, we introduce statistical methods for data analysis. In addition to covering statistical packages such as pandas, statsmodels, and PyMC3, we will explain the basics of the underlying mathematical principles. Therefore, this chapter will be most profitable if you have basic experience with probability theory and calculus.

The next chapter, Chapter 8, Machine Learning, is closely related; the underlying mathematics is very similar, but the goals are slightly different. In this chapter, we show how to gain insight into real-world data and how to make informed decisions in the presence of uncertainty. In the next chapter, the goal is to learn from data—that is, to generalize and to predict outcomes from partial observations.

In this introduction...